Property: O'Brien 637 ha
Location: Rouyn-Noranda, Qc Canada
Ownership: 100%
Stage: Advanced exploration
Milling: Five (5) potential plants for custom milling within 75 km of the project*

*See metallurgical testing section below

The O’Brien project is located in the Abitibi region in northwestern Québec, on provincial highway 117, about halfway between the towns of Rouyn-Noranda and Val-d’Or. Gravel roads provide easy access to the project.

The O’Brien project is located in the central part of Cadillac Township, Abitibi, in the heart of one of the most productive gold mining camps in Canada, the Cadillac Mining Camp, which boasts over 45 million ounces of gold (produced and in reserves and resources) and 3 mines presently in commercial production.

Mineral resources estimate

March 2018
g/t Au
g/t Au
g/t Au
g/t Au
All zones2.50
1 800 104
1 409 734
1 125 447
910 885
751 753
624 734
297 466
263 108
233 491
207 696
186 019
166 671
All zones2.50
2 054 524
1 519 190
1 157 021
830 615
538 938
416 123
278 644
231 612
194 084
154 833
115 833
95 508
  • *Notes to Accompany Mineral Resource Table:
  • *1. The independent qualified person for the 2018 MRE, as defined by NI 43 101, is Christine Beausoleil, P. Geo, of InnovExplo Inc. The effective date of the estimate is March 20, 2018.
  • *2. The Mineral Resources are classified as Indicated and Inferred Mineral Resources and are based on the 2014 CIM Definition Standards.
  • *3. These Mineral Resources are not Mineral Reserves, as they do not have demonstrated economic viability.
  • *4. Results are presented in-situ and undiluted.
  • *5. Sensitivity was assessed using cut-off grades from 2.5 g/t Au to 5.0 g/t Au. The official in-situ resource is reported at a cut-off grade of 3.5 g/t Au. Cut-off grades must be re-evaluated in light of prevailing market conditions (gold price, exchange rate and mining cost).
  • *6. A top cut of 30 g/t gold (5.0 g/t gold for the dilution envelope) was applied to assay grades prior to compositing grades for interpolation into model blocks using an inverse distance squared (ID2) method and was based on 0.75 m composites within a block model made of 3 m long x 3 m wide x 3 m high blocks.
  • *7. Density data (g/cm3) was established at 2.75 g/cm3.
  • *8. A minimum true thickness of 1.5 m was applied, using the grade of the adjacent material when assayed or a value of zero when not assayed for 17 different mineralised zones.
  • *9. The number of metric tons and ounces was rounded to the nearest hundred. Any discrepancies in the totals are due to rounding effects; rounding followed the recommendations in Form 43 101F1.
  • *10. InnovExplo is not aware of any known environmental, permitting, legal, title-related, taxation, socio-political, marketing or other relevant issues that could materially affect the mineral resource estimate.

Historical inferred mineral resources

Charlton, 1995
DespositShort tonsGrade (oz/st)Ounces
Old O'Brien mine539 3270,21110 786
  • *These “resources” are historical in nature and should not be relied upon. It is unlikely they conform to current NI 43-101 criteria or to CIM Standards and Definitions, and they have not been verified to determine their relevance or reliability. They are included in this section for illustrative purposes only and should not be disclosed out of context.

Longitudinal section - O'Brien Project


Section longitudinale du Projet O'Brien - Radisson Mining Ressources

Metallurgical testing 36E area - 2014

11,13 G/T AU

is the average grade obtained from the sample used for testing


average recovery of the gold contained in the ore by gravity concentration


Total recovery achieved by combining flotation or cyanidation with gravity concentration

The material used for the metallurgical testing was pulp from 36E area drill core. It consisted of composite core lengths from the main structures of 36E area (structures No. 1–6 and 8). The sample totalled 61 kilograms and had an average grade of 7.26 g/mt (0.212 oz/st) Au. Therefore, the grade of the material selected for metallurgical testing was very similar to the grade of the resource categories.

However, the average grade of gold recovered from the material tested was 11.13 g/t Au, with variations ranging from 7.47 to 14.59 g/t, which is nearly 56% higher than the grade of the sample prepared for these tests. Given the large amount of free gold in the sample used, the nugget effect may be responsible for this significant difference.

A first series of tests studied metallurgical recoveries that could be achieved with gravity separation. These tests produced a concentrate grading from 18,158 to 20,968 g/t Au, with recoveries in the order of 50–60% of the gold from the ore. The degree of grinding ranged from 58 to 80% minus 200 mesh; recovery improved as the grind became finer.

Potential plants for custom milling

MillCompanyProcessCapacity (TPD)Distance (km)
LaRondeAgnico EagleGravity concentration and Leaching7 200
1 500 (Lapa)
WestwoodIAMGOLDGravity circuit and Carbon-in-pulp2 200
CamfloMonarques GoldLeaching / Merrill-Crowe120040
Lac HerbinQMX GoldFloatation and Leaching120075
BeaconMonarques GoldLeaching / Merrill-Crowe90077

Subsequently, two processing circuits were considered. First, gravity concentration (Knelson concentrator and Mozley table) followed by flotation of the pulp of this concentrate in open and closed circuits. Gravity concentration produced a concentrate grading from 10,263 to 62,143 g/t Au, recovering from 54–67% of the gold from the ore. Flotation produced a concentrate grading 91 to 120 g/t Au. For most of these tests, a total recovery (gravity concentration and flotation) in the order of 93% to 94% was achieved. Some concentrates were analyzed for arsenic, producing results of about 12% As.

The second circuit consisted of gravity concentration (Knelson concentrator and Mozley table) followed by cyanidation of the pulp of this concentrate. Gravity concentration produced a concentrate grading from 25,598 to 30,508 g/t Au, recovering from 58–60% of the gold from the ore. A total recovery (gravity concentration and cyanidation) ranging from 90% to 93% was thus obtained.

For most tests, the degree of grinding used was 65–66% minus 200 mesh, a grind that is considered fine enough for this type of ore. In addition, reagent consumption, for both flotation and cyanidation, was similar to industry standards.